0=-16t^2+88

Simple and best practice solution for 0=-16t^2+88 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+88 equation:



0=-16t^2+88
We move all terms to the left:
0-(-16t^2+88)=0
We add all the numbers together, and all the variables
-(-16t^2+88)=0
We get rid of parentheses
16t^2-88=0
a = 16; b = 0; c = -88;
Δ = b2-4ac
Δ = 02-4·16·(-88)
Δ = 5632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5632}=\sqrt{256*22}=\sqrt{256}*\sqrt{22}=16\sqrt{22}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{22}}{2*16}=\frac{0-16\sqrt{22}}{32} =-\frac{16\sqrt{22}}{32} =-\frac{\sqrt{22}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{22}}{2*16}=\frac{0+16\sqrt{22}}{32} =\frac{16\sqrt{22}}{32} =\frac{\sqrt{22}}{2} $

See similar equations:

| 720=1/336h | | 10+x/2=2 | | 180-(2x-8)+(3x-6)+(x+2)=x | | 10x-5+3x-2=13x-7 | | 22+4t=-10 | | -8+6x-9x=-x | | 111=14a. | | -23-3x=-9x+37 | | 2(2x+2)=4+4x | | 2(×-4=4×+3x+6 | | 2/3(26-5x)-7x/3=1/3(52-17x) | | 6x-3+3x+13=13x+13+5x-7 | | 1/6(x+12)=4 | | x=1/256^3/4 | | -10-3c=-61 | | 0=-4.9t^2+2.5t | | -(x+2)-x=-x+7 | | 14q+3=17 | | 10+8y=-6 | | 3x+10=105 | | 108=2(-8x-2) | | X+16+4x-5+4x-5=90 | | w/6=7/12 | | 7x+2=(38) | | –8w=–7w−3 | | -5j+4j+-5j-j=-14 | | 17-5x=11-8x | | 3w-4=-20 | | 3g-2g-g+3g=15 | | 3y+×=9 | | 11x+6=-49 | | -91=-7(y-86) |

Equations solver categories